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Abstract

The problem of the stability of the unperturbed motion of a non-autonomous system is investigated on the basis of comparison
equations. The principle of the quasi-invariance of the positive limit set of a perturbed motion is derived, which enables a new form
of the necessary conditions for the stability of an unperturbed motion to be established using Lyapunov vector functions of fixed
and constant sign. Problems concerning the stability conditions of unsteady motions and the stabilization of programme motions of
mechanical systems are solved.
© 2007 Elsevier Ltd. All rights reserved.

1. Basic assumptions

Consider the system of ordinary differential equations

(1.1)

where X(t, x) = (X1(t, x), . . ., Xn (t, x)T) is a vector function, defined in the domain

and || · || is a certain norm in Rn.
We will assume that the right-hand side of system (1.1) satisfies the Lipsehitz condition with respect to x uniformly

with respect to t, that is, for any compactism K ⊂ G, a number L = L(K) exists such that the inequality

(1.2)

is satisfied for any x1, x2 ∈ K and any t ∈ R+.
The family of translations

will then be precompact in a certain compact metric space F. At the same time, it is possible to construct a family of
limit systems for system (1.1) in accordance with the following definition.
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Definition 1. (Ref. 1). A function X*(t, x), which is specified for a certain sequence tj → +∞ by the relation

(1.3)

is called a limit function to X(t, x). The system of equations

(1.4)

is called the limit system to the initial system (1.1).

Depending on the sequence tj → +∞, a whole family of limit systems (1.4), where X* ∈ F, corresponds to system
(1.1). At the same time, the positive limit set �+(t0, x0) of the solution x(t, t0, x0) of system (1.1), which is defined by
the formula

is quasi-invariant with respect to the family of systems (1.4) (Refs. 1,2).
We will now introduce the class K1 of vector functions

where Rk are k-dimensional spaces with norm || · ||k, which are bounded and uniformly continuous in each set R × K
in such a way that, for any compactism K ⊂ G, a number m = m(K) > 0 exists and, for any � > 0, � = �(�, K) > 0 exist
such that

for all (t, x) ∈ R × K, (t1, x1), (t2, x2) ∈ R × K which satisfy the inequalities |t2 − t1| < �,||x2 − x1|| < �.
For each function V ∈K1, the family of translations

will be precompact in a certain functional metrizable space Fv of continuous functions V : � → Rk with an open-
compact topology.3 Hence, for any sequence t → +∞, a sequence tlj → +∞ and a function V* ∈ Fv exist such that
the sequence of translations

will converge to V*(t, x) in the space Fv and, in fact, the convergence will be uniform with respect to (t, x) ∈ [−�,
�] × K for each number � > 0 and each compact set K ⊂ G.

We also introduce the analogous classes K2 and K3 of vector functions

which are bounded and uniformly continuous with respect to (t, u) ∈ R × K2 and (t, x, u) ∈ R × K1 × K2 for any compact
sets K1 ⊂ G and K2 ⊂ Rk. Here, it will additionally be assumed that each function U ∈K2 is continuously differentiable
with respect to u.

Correspondingly, families of limit functions {V*}, {U*}, {W*} can be constructed for each of the functions
V ∈K1, U ∈K2, W ∈K3 and the limit sets {(X*, V*, U*, W*)} can exist for specific sequences tj → +∞.

2. The problem of the localization of a positive limit set �+(t0, x0)

We will consider the problem of the limiting behaviour of the solution of system (1.1) by using a continuously
differentiable Lyapunov vector function V ∈K1.4
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Suppose that, for system (1.1), a function V ∈K1, V ∈ C1, V(t, 0) ≡ 0 exists whose derivative, by virtue of this
system, can be represented in the form

(2.1)

where the function U = U(t, u), U ∈K2 is quasi-monotonic and continuously differentiable with respect to u ∈ Rk,
∂U/∂u ∈K2, the function W ∈K3, and W(t, x, u) ≤ 0 for any (t, x, u) ∈ R × G × Rk.

It follows from representation (2.1) that V(t, x) is a comparison vector function and that the system

(2.2)

will be a comparison system.4

If V = V(t, x) is a function which satisfies Eq. (2.1) where V(t0, x0) = V0 and u = u(t, t0, V0) is a solution of system
(2.2) defined in the interval [t0, t0 + �) � > 0, then the inequality

is satisfied on the solution x = x(t, t0, x0).It follows from the condition U ∈ K2 that system (2.2) is precompact1,2 and a
family of limit comparison systems

(2.3)

can be defined for it.
It follows from the conditions or the right-hand side U = U(t, u) of system (2.2) that the solutions of this system

u = u(t, t0, u0) are continuously differentiable with respect to (t0, u0) ∈ R+ × Rk. It follows from the property that u(t,
t0, u0) is non-decreasing with respect to u0

4 that the matrix

is the non-negative normalized �(t0, t0, u0) = I (I is the identity matrix) fundamental matrix for the linear variational
system

Henceforth, it will be assumed that the comparison system (2.2) is such that the matrix �(t, t0, u0) has the following
property: for any compactism K ∈ Rk, numbers M(K) and �(K) > 0 exist such that the inequalities

(2.4)

hold for any (t, t0, u0) ∈ R+ × R+ × K.
Suppose x = x(t, t0, x0) is some solution of system (1.1) which is bounded by the compactism K0 ⊂ G, x(t, t0, x0) ∈ K0

for any t ≥ t0 and �(t0, x0) is the positive limit set of this solution.
On the basis of Alekseyev’s5 we obtain the following relation between the value

of the function V(t, x) for the solution x = x[t] = x(t, t0, x0) and the solution

of the comparison system (2.2)

(2.5)



868 A.S. Andreyev, O.A. Peregudova / Journal of Applied Mathematics and Mechanics 70 (2006) 865–875

We shall assume that the function V(t, x) has a lower bound in the set R+ × K0 and that the solution of system (2.2)
u[t] has an upper bound for all t ≥ t0. Then, constants � > 0, �0 > 0 exist in accordance with conditions (2.4) such that

It follows from this that

(2.6)

Suppose p ∈ �+(t0, x0) is a limit point, defined by the sequence

We choose the subsequence tj → +∞ for which the following convergences hold

In the same way as taking the limit mentioned earlier,6 we find that the convergences

hold uniformly with respect to t ∈ [−�, �] for each � > 0, where x ∗ [t] = x ∗ (t, 0, p), u ∗ [t] = u ∗ (t, 0, u∗
0), u∗

0 =
V ∗ (0, p) are corresponding solutions of systems (1.4) and (2.3). At the same time, from relations (2.5) and (2.6), we
obtain

We thereby have the following theorem.

Theorem 1. We assume that

1) a Lyapunov vector function V = V(t, x), V ∈K1 exists which satisfies the differential equality (2.1);
2) solutions of the comparison system (2.2) satisfy condition (2.4);
3) the solution x(t, t0, x0) of system (1.1) is bounded by a certain compactism K ⊂ � for all t ≥ t0;
4) the solution u(t) = u(t, t0, V0) of the comparison system (2.2), where V0 = V(t0, x0), is bounded for all t ≥ t0.

Then, a set of limit functions (X*, V*, U*, W*) exists for any limit point p ∈ �+(t0, x0) such that the solution
x = x*(t, p) of system (1.4) with the initial condition x*(0, p) = p satisfies the relations

where u*(t) is the solution of the limit comparison system (2.3) with the initial condition u*(0) = V*(0, p).
The theorem which has been proved is a theorem on the localization of a positive limit set on the basis of a Lyapunov

vector function and a comparison system. It is a development of the La Salle invariance principle for an autonomous
system7 and the principle of the quasi-invariance of a non-autonomous system on the basis of a scalar Lyapunov
function with a derivative of constant sign.2

Example 1. Consider the system of differential equations

(2.7)
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where p(t), 0 < p0 ≤ p(t) ≤ p1 is a certain continuous function. We take the Lyapunov function in the form

Using Theorem 1, it can be shown that each solution (x1(t), x2(t), x3(t), x4(t))T of system (2.7) for which x3(t) 
≡ 0,
has a property of the form

and each other solution, for which x3(t) = x4(t) ≡ 0, has a property of the form

where � and � are certain constants.

3. Theorem on asymptotic stability

We define the scalar function

The following result, which develops the theorem on asymptotic stability from (Ref. 4), can be obtained on the basis
of Theorem 1.

Theorem 2. We will assume that a positive-definite Lyapunov vector function V = V(t, x), V ∈ K1 exists such that

1) the differential equality (2.1) holds;
2) the zero solution u = 0 of the comparison system (2.2) is uniformly stable;
3) condition (2.4) is satisfied for each bounded solution of the comparison system (2.2);
4) for any limit set (X*, V*, U*, W*) and each bounded solution u = u*(t) 
= 0 of the limit comparison system (2.3),

the set

does not contain solutions of the limit system (1.4).

Then, the zero solution x = 0 of system (1.1) is uniformly asymptotically stable.

Proof. Conditions 1 and 2 ensure the uniform stability of the zero solution x = 0 of system (1.1). The property of the
attraction of the solutions of system (1.1) to the point x = 0 follows from Theorem 1.

We will now prove that the solution x = 0 of system (1.1) is uniformly attracting with respect to (t0, x0), that is, a
positive number � > 0 exists and a number T = T(�) which is independent of t0 is found for any � > 0 and t0 ≥ 0 which
are such that

We shall assume that the opposite is true: it is possible to find numbers �0 > 0, �0 > 0 such that, for any sequence
Tk → +∞, a sequence (tk, xk), tk ≥ 0, ||xk|| < �0 exists such that

Without loss of generality, it can be assumed that

that a sequence tk → +∞ defines a limit set (X*, V*, U*, W*) since, otherwise, tk + Tk/2 can be taken as tk and
x(tk + Tk/2, tk, xk) taken as xk and it is possible to pass, if need be, to converging subsequences.
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We select the number �0 = �0(�0) > 0 from the condition for the uniform stability of the zero solution of system
(1.1). Then,

(3.1)

Taking the limit as tk → +∞ in inequality (3.1), we obtain

(3.2)

Suppose x∗∗
0 is the positive limit point of this solution, which is determined by a certain sequence tm → +∞. Without

loss of generality, we shall assume that the sequence tm → +∞ determines the limit set (X**, V**, U**, W**). By
virtue of condition 4 of the theorem x∗∗(t, 0, x∗∗

0 ) ≡ 0. This contradicts inequality (3.2), which also proves that the
solution x = 0 of system (1.1) is uniformly attracting with respect to (t0, x0).

Example 2. We will now consider the problem of the stability of the equilibrium position of a mechanical system
with one degree of freedom, the motion of which is described by the equation

(3.3)

We shall assume that the continuous functions f(t; x), g(t, x) are such that the conditions

(3.4)

are satisfied.
Using the substitution

Eq. (3.3) can be represented in the form of the system

(3.5)

We take the Lyapunov vector function in the form V = (|x1|, |x2|)T and then obtain the comparison system

(3.6)

The zero solution u1 = u2 = 0 of system (3.6) will be uniformly stable if

(3.7)

On applying Theorem 2, we obtain that condition (3.7) is also the condition for the uniform asymptotic stability in
the large of the zero equilibrium position of system (3.3). In fact, the set {Ṽ = const} does not contain solutions of the
limit system

(3.8)

apart from the zero solution x1 = x2 = 0. Here, V̄ = max{|x1|, |x2|}.
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We will illustrate the result which has been obtained using the solution of a problem on the stabilization of the
unsteady motion of a physical pendulum8 as the example.

Suppose the specified motion � = �0(t) of the pendulum is created by its variable velocity �(t) of rotation about the
vertical axis. When the viscous friction forces are taken into account, the equation of motion has the form

We introduce the deviation x = � − �0(t) of the true motion from the programmed motion and assume that constants f1
and f2 exist such that

The equations of the perturbed motion can be represented in the form of (3.3), where

From inequality (3.7), we find the sufficient conditions for uniformly asymptotic stability of the motion � = �0(t)

and, moreover

These are the condition for the second variation of the reduced potential energy of the pendulum to be positive
definite for the motion �0(t) and the condition for it to have an upper limit of f 2

1 /(2A2).

Example 3. Let us assume that a rigid body, fixed at the centre of mass O, with principal central axes OX, OY, OZ
under the action of a moment

executes a programmed motion

(3.9)

around the largest axis of inertia OX (A < B < C), where p, q and r are the projections of the angular velocity on to the
OXYZ axes.

We now consider the problem of the stabilization of the motion (3.9) by control moments M1, M2, M3 with respect
to the OX, OY and OZ axes of the form

where � and �i(i = 1, . . ., 4) are certain constants. The equations of the perturbed motion have the form

(3.10)

As the Lyapunov function, we take the vector function
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We find the comparison system

On satisfying the condition

the comparison system will be stable. On the basis of Theorem 2, we obtain that the zero solution of system (3.10) is
uniformly asymptotically stable as a whole.

4. Lyapunov vector functions of constant sign

We will introduce the following definitions in a similar manner to that described earlier in (Refs. 6,9).

Definition 2. The zero solution x = 0 is stable with respect to the set {V̄ ∗(t, x) = 0} and the selected limit ensemble
(X*, V*, U*, W*) if a � = �(�) > 0 exists for any � > 0 such that the condition

is satisfied for any solution

of system (1.4).
The zero solution x = 0 is asymptotically stable with respect to the set {V̄ ∗ (t, x) = 0} and the selected limit ensemble

(X*, V*, U*, W*) if it is stable and a number � > 0 also exists for which, for any � > 0, T = T(�) >0 exists such that,
for any solution

of system (1.4), the following condition is satisfied

Definition 3. The zero solution x = 0 is uniformly stable (uniformly asymptotically stable) with respect to the set
{V̄ ∗(t, x) = 0} and the family of ensembles {(X*, V*, U*, W*)} if the number � = �(�) > 0 in Definition 2 is independent
(the numbers � > 0 and T = T(�) > 0 in Definition 2 are independent) of the choice of (X*, V*, U*, W*).

Theorem 3. We assume that a Lyapunov vector function

exists such that conditions 1–3 of Theorem 2 are satisfied and, also, the following condition (Condition A): the zero
solution x = 0 is uniformly asymptotically stable with respect to the set {V̄ ∗(t, x) = 0} and the family of limiting
ensembles {(X*, V*, U*, W*)}.

The solution x = 0 of system (1.1) is then uniformly stable.

Proof. We will now prove that the solution x = 0 of system (1.1) is stable. We will assume that this is not so. Then,
numbers �0 > 0 and t0 ≥ 0 and sequences τj → +∞ and x0

j → 0 then exist such that
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(4.1)

By virtue of the continuity of the solutions of system (1.1) and condition (4.1), a sequence tj → +∞ exists for any
number �1 > 0 �1 < �0 such that the following relations hold

(4.2)

We now use the notation xj = x(tj, t0, x0
j ) and consider the solution x(t + tj, tj, xj), t ≥ 0 of system (1.1). Without

loss of generality, we shall assume that the sequence tj → +∞ is such that xj → x∗
0 when j → +∞ and that tj → +∞

determines the limit ensemble (X*, V*, U*, W*). The sequence of solutions x(t + tj, tj, xj) of system (1.1) then reduces
to the solution x∗(t, 0, x∗

0) of the limit system (1.4) uniformly with respect to t ∈ [−�; �] (� > 0 is an arbitrary number).
From the inequalities

(4.3)

and the conditions for the stability of the zero solution u = 0 of the comparison system (2.2), we obtain that the following
relation holds

(4.4)

We will now prove that �j − tj → +∞ when j → +∞. We will assume that this is not so, that is, that a number � = �(�1) > 0
exists such that �j − tj ≤ �(�1). Then, on the one hand, a moment t1 ∈ [0, �] is found such that

(4.5)

and, on the other hand, by virtue of Condition A of the theorem, a number � = �(�) > 0 exists for � = �0/2 > 0 such that

We put �1 = �, and the inequality ||x∗(t, 0, x∗
0)|| < �0/2 will then be satisfied, which contradicts equality (4.5). The

resulting contradiction proves that �j − tj → +∞ when j → +∞. By virtue of Condition A of the theorem, a number
�1 > 0 exists and T = T(�) exist for any � > 0 such that the inequality

(4.6)

holds for all t ≥ T and x0, ||x0|| < �1. We put �1 = 3�1/2 and � = �1, then the inequality ||x∗(t, 0, x∗
0)|| ≥ �1 will

hold for all t ≥ 0, which contradicts inequality (4.6). Hence, the stability of the zero solution x = 0 of system (1.1) is
proved.

The uniform stability of this solution is proved out using an analogous scheme. We assume that the solution x = 0 of
system (1.1) is not uniformly stable. Numbers �0 > 0 and t0 ≥ 0 and three sequences τj → +∞, t

j
0 ∈ R+ and x0

j → 0

then exist such that equality (4.1) holds when t0 is replaced by t
j
0. At the same time, relations (4.2) hold when t0 is

replaced by t
j
0. Using the notation xj = x(tj, t

j
0, x0

j ) and considering the solution x(t + tj, tj, xj), t ≥ 0 of system (1.1),
we repeat the preceding arguments. Here, the fact that equality (4.4) holds follows from relations differing from (4.3)
by the replacement of t0 by t

j
0, the conditions for the uniform stability of the zero solution u = 0 of the comparison

system (2.2) and from the condition V ∈K1. The subsequent proof is repeated without any changes.
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The following result can be derived as an extension to Theorem 3.

Theorem 4. We assume that, in addition to the conditions of the preceding theorem, the set

does not contain solutions of system (1.4) (here, u*(t) 
= 0 is an arbitrary bounded solution of the limit comparison
system (2.3)).

The solution x = 0 of system (1.1) is then uniformly asymptotically stable.
Theorems 3 and 4 develop well known results6,9 in the case of a Lyapunov vector function.

Example 4. In Example 3, we assume that, under the action of a moment about the OX axis, a body executes a
programmed motion (3.9) around the mean principal central axis of inertia (B < A < C). We now consider the problem
of the stabilization of this motion by the moments

where k1, k2, k3 are certain positive constants. The equations of the perturbed motion will have the form of (3.10). The
following notation is used

As the Lyapunov function, we take the function

which is of constant sign.
On calculating the derivative of the Lyapunov function by virtue of the linearized equations of the perturbed motion,

we obtain the differential inequality

where

Using Theorem 4, the condition for the stabilization of the programmed motion of the body can be written in the
form

(4.7)

where p∗
0(t) is a function which is the limit function to p0(t).

Note that, in the case of a steady rotation (p0 = const), condition (4.7) is identical to the condition obtained using
the Routh-Hurwitz criterion.

It can be shown that the asymptotic stability of the unsteady rotation in Examples 3 and 4 will be exponential.
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